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POINTWISE SIMULTANEOUS CONVERGENCE OF EXTENDED 
LAGRANGE INTERPOLATION WITH ADDITIONAL KNOTS 

GIULIANA CRISCUOLO, GIUSEPPE MASTROIANNI, AND PETER VERTESI 

ABSTRACT. In numerical analysis it is important to construct interpolating poly- 
nomials approximating a given function and its derivatives simultaneously. The 
authors define some new good interpolating matrices with "many" nodes close 
to the endpoints of the interval and also give error estimates. 

1. INTRODUCTION 

In numerical analysis it is important to construct interpolating polynomials 
approximating a given function and its derivatives simultaneously. For this 
reason we try to define new interpolating matrices with nodes easily calculable 
and "small" Lebesgue functions or constants. 

Very recently, the weights wI(x) = (1 - x)w (x), w2(x) = (1 + x)w(x), 
and w3 (x) = (1 -_x2)w (x) with w E GJ (cf. (2.8)), and the roots of the corre- 
sponding orthonormal polynomials {Pm (w)} and {Pm (Wi)} (i = 1, 2, 3) were 
considered in [2]. As it turned out, all the zeros of q2m = Pm (w1)Pm (w2) are 
simple; a similar result holds for q2m+I = Pm+I(W)Pm(W3) . (See [2, Theorems 
2.2 and 2.3].) These facts allow us to define two so-called extended interpolatory 
matrices XI and X2 having as nodes the zeros of q2m and q2m+1 , respectively, 
and to consider uniform convergence of the corresponding Lagrange interpola- 
tion. (See [2, Theorems 4.1 and 4.3].) 

Extended interpolatory matrices were used for numerical quadrature (Kron- 
rod formula) and for the numerical solution of singular integral equations by 
several authors. The interested reader may consult the exhaustive survey papers 
of Gautschi [5] and Monegato [6]. 

The main goal of the present paper is to achieve good simultaneous approx- 
imation of a given function and its derivatives, using the above matrices XI 
and X2 and some additional nodes near the endpoints ? 1 . 

2. PRELIMINARIES 

Lagrange interpolation. Let {Qn} be a sequence of polynomials (Qn E Pn) 
with zeros ti,n, j = 1, 2, . .. , n, satisfying 

(2.1) -1 < tl n < t2_n < < tn-n < 1 

Received by the editor July 20, 1990. 
1991 Mathematics Subject Classification. Primary 4 1A05. 
This material is based upon work supported by the Italian Research Council (first and second 

authors), by the Ministero della Ricerca Scientifica (second author), and by Hungarian National 
Foundation for Scientific Research Grant No. 1801 (third author). 

(?) 1992 American Mathematical Society 
0025-5718/92 $1.00 + $.25 per page 

515 



516 GIULIANA CRISCUOLO, GIUSEPPE MASTROIANNI, AND PETER VERTESI 

and 

(2.2) 1 +tin n-2 tnn n E N.' 

Along with the matrix T = {ti,n, j = 1, 2, ... , n}'IO we consider additional 
matrices Y = {Yjn , j= 1, 2, s..., Z ={Z1,n, j = 1, 2, . r. , 

r, s > 0, where 

-<Y ,n < Y2,n < <Ys,n < t1 ,n < tn,n < Zl ,n < Z2,n < < Zr,n <, 

tI nYs, n -n-2 Z ,n-tnn n E N. 

Moreover, we define the polynomials 
s 

AO(x)_ I1 As(x) = I(X - Yj,n), S>?0 
j=1 

r 

Bo(x)-I, Br(X) = JJ(X-Zjn), r > 0. 
j=1 

For a given matrix V and bounded function f, denote by Lk (V; f) the 
corresponding Lagrange (Hermite) polynomial of degree k - 1 . The polynomial 
Ln+r+s(X; f) of degree n+r+s- l basedon X=TUYUZ is 

Ln+r+s(X; f) =AsBrLn (T; AB + AsQnLr (Z; Af) 
(2.3) \ fr S!l 

+ BrQnLs (Y; Br Qn) 

where 

(2.4) L~ (T; ABr; x) = S QA (tin)As(ti n) Br(ti, n) (X ti, n) 

Lr (Z; A5Q ;x)= As(zln)Qn(zln) 

(2.5) + (X-ZIn)(XYZ2,n) .(X Zi-I,n) 
i=2 

x [Zl,n, Z2,n, Zi~n fsn 

Ls Br;BQn;) Br(YI,n)Qn(YI,n) 

(2.6) + E(X Y1,n)(X Y2, n) (X Yi-1, n) 
i=2 

x [YinY2,n , Yi~n; Br Qn] 

1 If A and B are two expressions depending on some variables, then we write 

A B if and only if IAB-I | < const and IA'-BI < const, 

uniformly for the variables in question. 
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Here, [uI, u2, ... , up; g] is the divided difference of the function g at the 
points UI, u2, . . ., up . If the function f is not differentiable, then we assume 
that all the knots are different. When f E Cq, q > 1, then the multiplicity of 
each additional knot may be at most q, so we may have Hermite interpolation. 

In the case r = 0 we set Lr 0, and similarly, if s = 0, then Ls _ 0. 
Obviously, when r = s = 0 the right side of (2.3) becomes Ln(T; f). 

Special weights. Let v Y, '5 be the Jacobi weight function 

(2.7 y {(1- x)y (1 +x)3 if x < 1, 
(2.7) v~(x) = 2, (5 E IR. 

l.0 if 1xI > 1, 
We consider the generalized Jacobi weight w (w E GJ) defined as follows: 

(2.8) w(x) = ((x)va'fl(x), a, fl > -1, 

where the modulus of continuity o((o; ) of the function (o > 0 satisfies 
I 

coft)t-I dt < oc. 
Then, let {pm (w) } be the system of orthonormal polynomials corresponding 

to the weight function w E GJ, i.e., 

Pm(W; x) = am(W)xm + lower-degree terms, am(W) > 0, 
and 

/ Pm (W; X)Pn (W; x)w (x) dx = am, n a 

We denote by xi,m = xi,m(w), i = 1, 2, ..., m, the zeros of pm(w), with 

-1 < XI,m < X2,m < < Xm,m < 1, 

and by ii,m(W) = im(W; Xi,m(W)), i = 1, 2, ..., m, the Christoffel con- 
stants, where 

_m- I - 

im(W; X) = [pv2(W; X) 
Li=O 

is the mth Christoffel function. 

Extended Lagrange interpolation. Let w E GJ be defined by (2.8). We consider 
the weight functions 

(2.9) WI (X) = w(x)(1 -x), 

(2.10) w2(x) = w(x)(1 + x), 

(2.11) w3(x) = w(x)( _-x2), 

and the corresponding systems of orthonormal polynomials 

{Pm (W 1) }I , Pm (W2) }, {Pm (w3)} X 

It is known [2] that the zeros Xi,m(W3) interlace with the zeros x, m+I(W) 
i.e., 

Xi,m+I(W)<Xi,m(W3)<Xi+1,m+I(W), i1,...,m, mEN. 

In [2] it is also proved that the polynomials Pm(wl) and Pm(W2) have no 
common zeros; further, 

xi,m(W1) < Xi,m(W2), i1,I.., m, m E N. 
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Therefore, the zeros of Pm+1(W)Pmn(W3) and those of Pm (w1)Pm (w2) satisfy 
conditions (2.1) and (2.2). 

Moreover, we recall a more precise result on the distribution of the zeros of 
Pm+i(W)Pm(W3) and Pm(WI)Pm(W2) 

(2.12) Xi,m(W3)- X,m+ I (W) 13), m 

uniformly in 1 < i < m, m E N, and x E [Xi,m+1(W), Xi+,,M+I(W)1, 

(2.13) Xi,m(W2) - Xi,m(W) --xim(W2) 

uniformly in 1 < i < m - 1, m E N, and x E [xi,m(wi), xj+i,m(wi)]. (See 
[2, Theorems 3.1, 3.2].) 

Now, for a bounded function f, we define the "extended Lagrange interpo- 
lating polynomial" L2m+ r, , (w, w3; f ) as the Lagrange (Hermite) polynomial 
based on the zeros of Pm+I (W)Pm(W3) and on the knots of the matrix Y U Z . 
Replacing Qn by Pm+ I (W)Pm (W3) in (2.3), we get 

L2m+l,r,s(W , w3; f; x) 
= As(x)Br(X)Pm+l(W; X)Pm(W3; x) 

x 

+ 
E f(Xi,m+i(W))As1(xi,m+i (W))B-1 (xi, m+i (w)) 

i= I PM+ I (W ; Xi, m+lI (W))Pm (W3; Xi, m+lI (W)) (X- Xi, m+lI (w)) 

+ f (Xi, m (W3)) A -l(Xi, m (W3))B 
- I 

(Xi, m (W3))l 

i= Pm+i (W; Xi, m(W3))Pm(W3; Xi, m(W3))(X - Xi, m( W3)) J 

+ As (X)Lr (Z; AsPm+ I (w)Pm (w3) ) 

+ Br (x )Ls (Y; frp + i Pm(w +Br(X)s (~;BrPm +I(W)Pm (U3)' 

Recalling that 

PM+l (W; Xi, m+l (W))Pm (W3; Xi, m+l (W)) 

= CmA-Lj+i(w)(l X m+i(W)Yl, i = 1, ..., m ?1, mEN, 

and 

Pm+I(W; Xi,m(W3))P (W3; Xi,m(W3)) 

=-CmAi-' (W3), i=1,..., m, MEN, 

where Cm = am(W3)ac1(w) + em+(w)ae1(w3) < oo (see [2, Theorem 2.2]), 
and introducing the notation 

Hm(w;f;x) xZZxi(w)xiM(W)), 
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we can write 

L2m+l,r,s(W, W3; f) 
= Pm+I(W)Pm(W3) 

(2.14) X { C;IAsBr [Hm+i (w; V1 1Af B)) Hm (w3; AfBr)] 

+ AsLr (Z; Aspm+i(w)Pm(W3)) 

+BrLs ( 3; BrPm+i(W)Pm(W3))} 

Similarly, we define the "extended Lagrange interpolating polynomial" 
L2mrs(W , W2; f ) on the zeros of PIim(WL)P m(W2) and on the knots of the 
matrix Y U Z by 

L2mrs(WL, W2; f) 

= Pm (W )Pm (W2) 

(2.15) x { DAsAs"r [Hm (w2; V1OABr) )-Hm (wi; V1AsB )] 

+ AsLr (Z; Aspm (w )Pm (W2)) 

+BrLs (Y; Br fW~mW)} 
( BrPm (w I )Pm (W2 ))} 

with Dm = am(WL)/am(W2) + am(W2)/am(Wi) < oo . (See [2, formula (2.17)].) 
Finally, recalling that the zeros of the polynomial pm(w)pm+ (w) obviously 
satisfy conditions (2.1) and (2.2), we can also consider the "extended Lagrange 
interpolating polynomial" L2m+ 1, r s(w , w; f ) on these zeros and on the knots 
of the matrix Y U Z. Thus, 

L2m+l1,rs(W, w; f) 

= Pm (W)Pm+I (W) 

(2.16) x { <) AsBr [Hm+(w; AB)Hm (w;AB)] 

+ AsLr (Z; Aspm (w)Pm+ I (w)) 

+BrLs (r; BrPm(W)Pm+i (W))} 

Let us remark that the zeros of Pm (w)pm+ (w) satisfy 

1 -X2(W 
(2.17) mmi n Xim(W)-Xkm+1(W)l 

i 
xM(W) 

kEli, i+1} m 

uniformly in 1 < i < m, m E N, and x E [Xi, m+i (W) , Xi+i, m+i (W)]. Compar- 
ing (2.17) with (2.12) and (2.13), we deduce that the distribution of the zeros of 
Pm(w)pm+ I(w) is different from those of Pm+I(W)Pm(W3) and Pm(WI)Pm(W2) . 
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This fact causes the different behavior of the corresponding processes (cf. The- 
orems 3.1 and 3.2). 

3. CONVERGENCE OF THE EXTENDED INTERPOLATION FORMULAE 

We define the space of functions Cq on the interval [-1, 1] in the usual 
way; thus, f E Cq if and only if f is continuous with its derivatives f (Il, 

j < q, on [-1, 1]. Furthermore, let LipMA, 0 < < A < 1, be the class of 
Holder-continuous functions, i.e, f E LipM A if and only if f is continuous 
and its modulus of continuity wo(f; ) satisfies wo(f; () < MJI, M E R+. 

Theorem 3.1. Let w, W1, W2, W3 E GJ be the weightfunctions defined by (2.8)- 
(2. 1 1 ). Let f E Cq , q > O , and let I E { 0,1 ,I.. q}. Then, 

[f (h)(x)-L2m+1 ,rs(W, W3; f ; x)]| } 

[f(h)(X) - Lm j (Wi, w2; f ; x)I 

(3.1) const/ login 
< const ~~~~~~~~~~~~~~~~~~~~~1 X2 + (f (q) ; lo 

x <?1, h= , 1,...,l, 

with some constant independent of f and m, whenever the integers r and s 
fulfill 

(3.2) +a?1 <r ?+a+2, 
2 ~~~2 

(3.3) 1+ 1? s < +fl?2. 

Theorem 3.2. Let w E GJ be the weight function defined by (2.8). Let f E Cq, 
q > O, and let I E {O.1, ..., q}. Then, 

|[(X- L2m)+ I rs 5(W, w; f ; x)] (~_~_~ m 

(3.4) <const X2'+ f)h (f(q); 1) login 

Ix<?1, h=O,1,...,l, 

with some constant independent of f and m, whenever the integers r and s 
fulfill 

Ju 1fi 111 
(3.5) ?+a<r< -+a+1, 

2 - 2 
1 1 

(3.6) +?f<s < +fl+1. 

To complete the previous theorems, we notice that the polynomial 
L2m+I (w, W3; f ) interpolating f only on the zeros of Pm+I (W)Pm(W3) gener- 
ates an error given in [2]. Therefore, by the Gopengauz theorem and Markov's 
inequality, there follows 

If (h) (x) - Lh)+I (w, w3; f ; x)I < const amo(f (q ); m1) logmi 
2m M~~~~~~~~) q-2h 
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where am = max(m2+2a, m2+2fl), xi < I , which is weaker than the first in- 
equality of (3.1). An analogous argument can be developed for the Lagrange 
polynomials corresponding to the zeros of Pm(WI)Pm(W2) and Pm (W)Pm+ 1(w) - 
Hence, adding knots near the endpoints +?1 seems necessary to obtain good 
interpolation processes. We recall also that, if w is a Jacobi weight, so are 
W1, W2, and W3; therefore, the interpolation knots are computable efficiently. 

Finally, we remark that (3.4) (because of the factor 1- +x2+ mr- 1) is weaker 
than (3.1). The reason probably is the distribution of the zeros (cf. (2.17)). 

Inequalities (3.2) and (3.3) can be rewritten as 

(3.7) r - 2- 2 < a < r - 2 - 1, 
2 - 2 

(3.8) s - -I- 2 < fl < 5 - 2 - I1, 2 1 

and (3.5) and (3.6) as 

(3.9) r- -1 < a < r- 
22 

(3.10) s - - - I < < s - 2 

Obviously, since a, fi > -1, inequalities (3.7) and (3.8) imply r > 1/2 and 
s > 1/2; similarly, (3.9) and (3.10) imply r > 1/2 - 1 and s > 1/2 - 1. In 
any case, one can define infinitely many good matrices satisfying (3.7) and (3.8) 
((3.9) and (3.10)) and the above condition for which (3.1) ((3.4)) holds true. 

When the additional knots coincide with -1 and 1, as we have already 
observed in ?2, we obtain a Hermite interpolation process (r, s < q + 1). 
Further, (3.1) and (3.4) can then be improved. 

Theorem 3.3. Let f E Cq, q > 0, and let l E {0, 1, ...,q}. Assume that the 
values f (U)1), i = 0, 1, ..., s - 1, and f (i)(1), i = 0, 1, ..., r - 1, with 
r, s < q + are known, and let 

(3.11) Yim =-1, i = 1, 2, ..., s, Z,ml = 1, 2, ... , r. 

If r > l/2, s > l/2, and a and /5 satisfy (3.7) and (3.8), then 

I[f h)(x) -2m+l ,r,s(W, W3; f ; x)]I 

I[f (h)(x) - L~ rs (Wl, W2; f ; x)]j 

(3.12) <1const ( 1 x ) (f (q); ) 1g2m 

xl? < 1, h = 0, 1,...,l, 

with some constant independent of f and m. 

Theorem 3.4. Let f E Cq, q > 0, and let l E {0, 1..., q}. Assume that the 
values f ()(-1), i = 0, 1, ..., s - 1, and f ()(1), i = 0, 1, ..., r - 1, with 
r, s < q? 1, are known, and let (3.11) hold. If r > l/2 - 1, s > l/2 - 1, and 
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a and fi satisfy (3.9) and (3. 10), then 

I[f (h)(x) - L 1 r(W, W; f x)] l X21 

(3.13) costt ((q)_ _ logim 

Ix Il, h=0,1,...,l, 
with some constant independent of f and m. 

In both theorems we again define infinitely many "good" matrices. In the 
estimates (3.1), (3.4), (3.12), and (3.13), the ordinary modulus of continu- 
ity (f (q); 1/m) appears. In general, we cannot replace the term 1/m in 
the modulus of continuity by 1 -/X21m + m-2 in (3.1) and (3.4), and by 
/I -x2/m in (3.12) and (3.13). However, if the qth derivative of f is Holder 

continuous, i.e., f (q) E LipM A, then we can state the following theorems. 

Theorem 3.5. Let w, W1, W2, W3 E GJ be the weightfunctions defined by (2.8)- 
(2.11). Let f e Cq, q > 0, and f (q) E LipM)A, 0 < A < 1, and let 1 E 
{0, 1, . .. , q} . Then, for any exponents a, fi > -1, there exist positive integers 
r, s defined by 

(3.14) 2 ?a+ 1 < r 
+ 
22 

(3.15) ? +,l+1 <? 1 < +f+2, 
2 2 

such that 
I [f (h)(x) - h) rs(W, W3; f ; x)]l 

I[f(h)(x) - L (Wi, W2; f ; x)] J 

(3.16) /+- 

<const + mlogm 

IxI < 1, h=O, 1, ... ,, 

with some constant independent of f and mi. 

Theorem 3.6. Let w X GJ be the weight function defined by (2.8). Let f E Cq, 
q > 0, and f (q) E LipmA, 0 < A < 1, and let 1 E {0, 1, ..., q}. Then, for 
any exponents a, fi> -1, there exist positive integers r, s defined by 

(3.17) +2 + a<r<2 +2 x+1 

(3.18) 2 ?+f<s < 2 +fl+1, 

such that 

I[f (h)(x) - L )+1 rs(W, W; f; x)]I ( 1 + ) 

I +A-h 
(3.19) costs( 1 login 

-m m2 Mq- 

Ixl?1, h=0,1,...,l, 

with some constant independent of f and m. 
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Theorem 3.7. Let f E Cq, q > 0, and f (q) E LipM A, 0 < A < 1, and let 
1 E {0, 1, ..., q}. Assume that the values f (i)(-1), i = 0, 1, ..., s - 1, and 
f (i)(1), i = 0, 1, ... , r - 1, with r, s < q + 1, are known, and let (3.11) hold. 
If r > (I + A)/2, s > (I + A)/2, and a and /3 satisfy 

(3.20) r - 2 - 2 < a < r - -1 
2 ~~~~2 

(3.21) s- 12+ -2< <B s - 
1+A - 1, 

2 ~~~~2 

then 

[f (h)(x) - L2+1 ,rs(W, W3; f ; x)]I 
} 

(3 22) [f (h)(x) -L Lrs(Wi, W2; f ; x)]| 

I 1-x2\ login < const y m) I < 1, h =0,1 1, 

with some constant independent of f and m. 

Theorem 3.8. Let f E Cq% q > 0, and f (q) E LipM A, 0 < A < 1, and let 
1 E { 0, 1,..., q}. Assume that the values f ()(-1), i = 0, 1, ..., s- 1, and 
f (i)(1), i = 1, .. .,r- 1, with r, s < q + 1, are known, and let (3.11) hold. 
If r > (1 + )/2 - 1, s > (I + A)/2 - 1, and a and fl satisfy 

(3.23) r 2- 1 < a < r- +2 

(3.24) 5 2 -1 <,B 5 2 s ' 

then 

I[f (h)(x) - L'h)+l r(W, w; f; x)] 

(3.25) < const _l( logim 

xI<?1, h=0,1,...,l, 

with some constant independent of f and m. 

Again, we have infinitely many "good" matrices. 

4. PROOFS 

Let 

(4.1) ,u(x) = tp(x)vl'3(x) E GJ, 

and denote by xi (,u), i = 1, 2, ..., m, the zeros of the mth orthonormal 
polynomial Pm (/u) corresponding to the weight ,u. 

For convenience, we collect some properties of the generalized Jacobi poly- 
nomials pm (u) which will be applied in the sequel. Set xi, m (,u) = cos 6i, m for 
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0 < i < m + 1, where xOm(,U) = -1, xm+i,m( U) = 1, and 0 < 6im < 7- 
Then 

(4.2) 0im- Oi+1,mI 

uniformly for 0 < i < m, m E N [7, Theorem 9.22, p. 166]. We have 

(4.3) Ai, M(Y) r0mI 1( IXi, M(,u)), 
+ l2 

(1 + Xi M (#)y 
+ 1/2, 

uniformly for 1 < i < m, m e N [7, Theorem 6.3.28, p. 120]. There holds 

(4.4) Ipm(,u; x)I < const( 1 x+ m-1)-7-/2(1+ + m-x)-+-112 

uniformly for -1 < x < 1 and m E N [1, Theorem 1.1, p. 226]. In particular, 

(4.5) Ipm(u; x)I m,+ 12 _pm(1j; 1), 1-m2 < x 1< 

and 

(4.6) IPm(J1 x)I /2m32 __(w -1)1 - <x -l +m 

uniformly for m E N (see also [8]). Furthermore, 

(4 7)jp I~~('; Xi, m(jU)) I 
X 

(/1-X ~()) ( AlX~(l 
+ m 1) 2y- 

(4.7) 

X ( 1 +xim(i)+m'<231, 

uniformly for -1 < x < 1 and m E N [7, Theorem 9.30, p. 170]. 

Lemma 4.1 (Telyakovskii and Gopengauz). Let f E Cq . Then for n > 4q + 5 
there exists a sequence of polynomials {Gn} such that for IxI < 1 and for 

(4.8) If(A)(x) - Gn')(x)I < const ( )( n l ) 

with some constant independent of f and n. 

Denoting by rn = f - Gn the remainder term, we can state the following 
lemma. 

Lemma 4.2. Let w wI, W2, w3 E GJ be the weight functions defined by (2.8)- 
(2.11). Let Lr and Ls be the polynomials defined by (2.5) and (2.6) with Qn = 

Pm+1(W)Pm(W3) or Qn = Pm(WL)Pm(W2). Then, for every function f E Cq, 
q > 0, and hE {1, ,... q}, there exist positive integers r, s, defined by 

_ + a 1 < r < _ +a+2, 

h h 
2 +,+ 1 <s< K2 +,B+2, 

such that 

As(X)Qn(x)Lr (Z; A Q ;x 

(4.) ,q r" 
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Br(x)Qn(x)Ls (Y; BL Q ; x 
(4.10) < const( - x + 2) (f(q); +1) 

with some constants independent of f and m. 

Proof. In order to prove (4.9), we observe that by (4.5) 

Pm+ I(W; OPm (W3; 1) -Pm (W I; OPm (W2; 1) 
M2a>+2, 

and so 
lQn(x)l M 2a+2, Zl,n < x < 1. 

Thus, by the Markov-Bernstein inequality, 

|Q'(x)l < constm M211Qn 11[zl,, 1] 
m 

MQn(l), Zl,n < x <1 

and 
11 - Qn(x) in2 

| [Q~x)]| r 2(x)S Qnl) S ZI,n < x < 1 . [Qn)J Q2 (X) Qn (1) 
In view of the last inequality, and taking into account that 

[Qn W) Qn~x W (J [Qn (x) Qn 

(see [7]), we deduce 

[ 1 I (2) 
(4.11) |[ W] 

< const 
Qn (1) Zl,n < x <1. 

Now, we recall that 

[Z1 n i Z2, nx Zi~n; AQ]=( ) A~)nx]-r 

Zln < Xi < Zi,n, where the identity holds also when arbitrarily many Zj,n 
coincide. So, by Leibniz' formula, 

| Zl, n , Z2 , n , Zi , n'; AsQn] 

?(ul) 
Z(-1) [Q1 

X) __ 
1[ 1 ]''1As (x)(i 

1=0 
QnX -_=~ 

Since the function l/As(x) and its derivatives are bounded for x > 0, we get 
by (4.11) 

| [ ,-, ' AsQn I Qn(l) 10 (1) Qn (l) 

Recalling the definition of Lr(Z; rm/(AsQn)), taking into account that 

(x - Zln)(x - Z2,n) ...(X - Zi-l,n) ? (1x m)22 for jxj < 1, and 
observing that by Lemma 4.1 

k)(l ? constm-2q+2ksl(f(q); m-2), Zlm < x < 1, k = 0, 1, ... q, 
r < q + 1, 
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we deduce by Leibniz' formula that 

(4.12) |L (Z; A Q x) < const _(Qf (q) 2q ) (l X)M2 + l]i, /r Asnwn(f();rn2) 

where IxI < 1 . On the other hand, if q = 0, 

LrKz;Ar7m ;x)=ZFI xZim rm(Zk,m) 
r 

As Qn J k= 1 Zk, m-Zi, m As (Zk, m) Qn (Zk, m) 
i7lk 

Since 
r 

I X-Zi'm < const(mr 1x+ 1)2r2-2 |X 1 ilZk,m -Zi,m 
1I<1 

i7lk 

we again deduce (4.12). We first assume IXI < 1 - m-2; then by (4.12), 

|Lr (Z; Am ;x) < const 0)(fQ (q1) ; IVJ 
2+2) )1X)r-I 

As~~n 
' ~ Qn (1 )M2q2r+2 

Recalling that Qn (1) -M2a+2 , we obtain 

|Lr (Z; Am Fx) < const 0(f 
q 

; Mq- IVrj-~s) 1 X)r-I, r 
AsQnlX ' 2(q-r-Ia+2) 2 1-Xr 

where IxI < 1 - M-2 . The hypothesis r < h/2 + a + 2 assures that q/2 - r + 
a+ 2 > 0. Then, since m-2 < 1 - x2, we can write 

Lr (Z; A xQ ;x) < const( mx) ( m ) 

X (-X)+I (I + X)-r+a+2, IX < 1-m-2 

Since IAs(x)I < (V1I+ x + m-1)2s, and observing that by (4.4) 

IPm+I(W ; X)pm(w3 ; x)| < const(l -x)a (l + x(I1, xl < 1 - 

IPm(WI; X)pm(W2; X)| < const(l - x)-a -(l + x)- , 1 -m-2 

we have 

As(x)Qn(x)Lr (Z; m x < const( ) ( m2) 

x (1 + x)s-r+a-fi+l XI < 1- m-2 

From this last inequality, (4.9) follows immediately for 0 < x < 1 - rn2. 
On the other hand, if -1 + m-2 < x < 0, it is sufficient to observe that the 
assumptions s > h/2+?B+1 and r < h/2+a+2 assure that s-r+a-l+JI > 0. 
Finally, if IxI > 1 - m-2, then inequality (4.9) follows immediately by (4.12). 
Similarly, one can prove inequality (4.10). El 

We omit the proof of the following lemma, since it is very similar to that of 
Lemma 4.2. 
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Lemma 4.3. Let w E GJ be the weight function defined by (2.8). Let Lr and Ls 
be the polynomials defined by (2.5) and (2.6) with Q = pm (w)pm+ I (w). Then, 
for every function f E Cq, q > 0, and h E { 0, ,.. ., q}, there exist positive 
integers r, s, defined by 

h 
+(x < r < 

h 
+(x+ 

3 h + <s < 
3 

+fi+ 
3 

2 - 2?a 2 22 
such that 

As(x)Qn(x)Lr (z; AZ Q ; x) ( + ) 

(4.13) ~ ~ <const \+ 2 O) f ((q); + 12) 

Br (X) Qn (x)Ls (Y; B ; x) ( 2 + - 

(4.14) ?const (l + 2) (f (q); l- + 2) 

with some constants independent of f and m. 

Later we need the following result. For any weight function ,u E GJ and for 
every x E [-1, 1], we have 

(O - Xk, m WY < const( -x + - 1)2p- 1 log m 
~mIx - Xk,m(Y)I 

(4.15) k=I 

if 1 1 
if -2 <P< ' 

( + Xk, m ( )) | < const( 1-+ mx - 1)2,7- log m 

(4.16) kmI 

if 1 1 
if -2< f< 2' 2- 

- 2K- 

where c denotes the index corresponding to the closest knot(s) to 

x, 

and p, a 
are real numbers. The proof of these inequalities can be found in [3]. 

Now we prove the theorems stated in the previous section. 

Proof of Theorem 3. 1. We start with the case h = 0 in (3.1). Let rm = f - Gm, 
where Gm is the polynomial defined by Lemma 4.1. Then, 

(4.17) lf(x)-L2m+i,r,s(W, w3; f; x)| < Irm(x)I+?L2m+lrs(w, w3; rm; x). 
Recalling (2.12), and applying Lemma 4.2 with h = 1, we find 

IL2m+1,r,s(w , w3; rm; x)I 

<const{ ( + 2) (f (q); l + 2) 

+ lAs(x)Br(x)pm+i(W; x)pm(w3; x)I 

x[Hm (w3; As;; x Hm+l(w;v lAB;;x)1}. 
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By 

As(X)Br(X) < ( 1+ X + m ( x + m)2r x < 1, 

and Lemma 4.1, we obtain 

IL2m+l,r,s(W, w3; rm; x)I 

(4.18) < const -(f q )lAs(x)Br(X)Pm+i(W; X)Pm(W3; x)I 

x {IHm(W3; Mq/2-r q/2-s. x)l + Hm+i(W; Vql2-r+lql2-s+l x)I} 

=1 + X2 . 

As above, let c be the index of the knots Xi,m(W3) corresponding to the closest 
knot(s) to x. Then, inequalities (4.3), (4.4), and (4.7) allow us to write 

(4.19) Pm(W3 X)Pm+I(W X) c,m(W3) 1 

Thus, applying again inequalities (4.3) and (4.4), we deduce 

Xi < const 6t( f ('4, m-1 ) ( 1 - x + 2ra 
x ( 1+x+ ml1)2(sfi-l) 

w (f(q2) ;M - (X (w3 ) ) 

< const q 1 - 
x + m-1)2(r-a-) 

X( W 1 + x + m1)2(s-fl) 

X l/2-r+a+3/2, l/2-s+f+3/2(Xi m(W3)) 

i7&c~I 
- IX-i, m (W3) 1 

for every lE {O. 1, ..., q} . Since l/2-rcx+ 1< O and l/2-s+,B+ 1?<O. 

we have 

Xi < cost t( f(q m1 + m-1)2(r-a- 1 ) 

x ( 1 + x - + 2(s--) 

X vl/2-~a+3/ (1/2sf+/ +Xi, m(W3))l/Sf+/ 

x { ( 1- x+ml)1++2 
- 

m(x-Xim(W3)) 

+( 1 + x~x + 1 m(W3))-X)+ }/ 

By (3.2) and (3.3) we have -2 <l /2-s+,?3/2 < 1/2 and -1/2 < l/2-r+cx+ 

3/2?< 1 /2; whence (4. 15) and (4.16) can be applied with p=l1/2 - r+ae+ 3/2 
and a = 1/2 - s + ,B + 3/2, respectively. We get 

0)(f (q)< M- (f(); m)(- 1 )(+m- 1)log) m 
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Similarly, 

X2< cost _)o(f (q) ;lm-( lX2+ M-l)l logm. 

These relations, together with (4.18), give us 

IL2m+l,r,s(W, w3; rm; x)J 

(4.20) < const t[+-l - 9f (q) ._I lg 

Then, by (4.17), and in view of Lemma 4.1, we deduce the first inequality in 
(3.1) for h = 0. In order to prove (3.1) for 1 < h < 1, we recall that if R, is 
an algebraic polynomial of degree n such that 

RRn(x)I?const( + Ix?)v <1 

where v is a real number, then for any integer j 

J(j)(x)l < const( 1 + x? ) ' < 

for some constant independent of v and j. (See [4].) So, by (4.20), we can 
write 

IL2m+l~r~s(Ww3; rm; x)J < const I + 11-h (f(q); ?) m'' 
L~~+irs(W, [ ~~~~m m2JM Mq-m 

Therefore, 

If (h)(X) - L (h) 
rs(W W3; f ; x)J < Jr()(x)l + IL rs(hW w3; rm; x) . 

Finally, estimating Jr h)(x)I by Lemma 4.1, we deduce the first inequality of 
(3.1) also for 1 < h < 1. The proof of the second inequality of (3.1) is simi- 
lar. El 

Proof of Theorem 3.3. We first observe that by (3.1 1) we have AsBr = Vrs 

Now, let rm = f - Gm, where Gm is the polynomial of Lemma 4.1; then 
rmk)(?1) = 0, k = 0, 1, ... , q . Therefore, recalling (2.14), since r, s < q + 1 , 
we find 

IL2m+lrs(W , W3; rm; x)J 

= const vr, s(x) Ipm+I (W; x)pm(W3; X) I 

(4.2 1 ) x { Hm (W3; rr ; x) + Hm+l(W; Vr ;x) } 
const{SI + S2}. 

If we assume xm, I (w) < x < Xm, m (w) , then we can proceed as in the proof of 
Theorem 3.1. Indeed, in this case, 1 - x2 > m1-, and by (4.19) we have 

( 1X2' f (q). I login 
(4.22) L2m+ , rs(W , w3; rm; x) < const ( m ., V'; l M) 1 ' 

for xm,I(w) < x < xm,m(W). 
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On the other hand, if xm,m(w) < x < 1, then by Lemma 4.1, and in view 
of the inequalities (4.3), (4.5), and (4.19), 

r , m(f 1 )2a+ -2 Vql2-r+a+3/2 q/2-s+JJ+32 (Xm 

< const | VS(X) o (f (q) 1 ) Vl/2-r+a+3/2l/2-s++32(X ,i(Wl)) 

- tm -(> ' m -2 
V1i21 m(x-xmi(wi)) 

< const { vrs(x) j (f (q) 1 ) 

x mml (1 
-U)//2-r+ca+ 

(1 + U)l/2-S+i+l du 

J-1 x-U 

?( m ) q ( m) 

The last integral can be easily estimated. Indeed, since 1/2 - s + ,B + 1 > -1, 

X mm-i(W) )(1U)2 (1 + U) /21S+fi+l du 

<?{J + t -l }(1 - U)1!2 r+a+1 (1 + U)l/2 s+sf+l du 

xM m m I( )(1/2-r/a-l ci 1 (1 +)u l/2-r+f 
y - 1 

Further, since -I <l1/2 - r a? 1 <0 and y > 1 , we can write 

xM'M- ( 
- U)112 r+a,+l (1 +U12sflld 

I- x- U 

< const(l - X)1/2-r+a+l log m. 

Therefore, (4.21) is still valid when Xm, m(W) < x < 1 , and similarly for -1 < 
X <XM I1(w). Then, by (4.17) and Lemma 4.1, we deduce the first inequality 
of (3.12) for h = 0. Proceeding as in the last part of the proof of Theorem 
3.1, we can obtain the first inequality of (3.12) also for 1 < h < 1. The proof 
of the second inequality of (3.12) is similar. El 

The proofs of Theorems 3.2 and 3.4 are analogous to those of Theorems 3.1 
and 3.3, respectively. We omit the details. 
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Proof of Theorems 3.5 and 3.7. Proceeding as in the proof of Theorem 3.1, we 
find 

L2m+Irs(W, w3; rm; x)j < const As(x)Br(X)Pm+t(W; X)Pm(W3; X) 

x { JHm (W3; vBqr2+(I2-riq2+Ix2ps; x) 

+ IHm+i(W; Vq/2+I/2-r+l ,q/2+A/2-s+1 ; x)|}, 

instead of (4.18). Then, by the same steps as in the proof of Theorem 3.1, we 
obtain the first inequality of (3.16). The second one can be proved analogously. 

Furthermore, if the additional knots satisfy the relation (3.11), then from 
(4.21) and by Lemma 4.1, 

JL2m+1,r,s(W, w3; rm; x)I ? cost (X)Ipm+I(W;X)Pm(W3; X) 

X {IHm(W3; VA/2-r,/2-s.; X) 

+ IHm+i (w; vA/2-r+1 ,A/2-s+1; 41; 

and proceeding as in the proof of Theorem 3.3, we deduce the first (or second) 
inequality of (3.22). El 

Theorems 3.6 and 3.8 can be proved similarly as Theorems 3.5 and 3.7, 
respectively. We omit the details. 
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